

S.A.R.A

Search And Rescue Assistant

Software Engineering | Group 8

Date: Apr 14, 2019
https://abhiek187.github.io/emergency-response-drone/

TEAM MEMBERS

Sahana Asokan

Won Seok Chang

Avnish Patel

Abhishek Chaudhuri

Shantanu Ghosh

Srikrishnaraja Mahadas

Sri Sai Krishna Tottempudi

Vishal Venkateswara

https://abhiek187.github.io/emergency-response-drone/

Individual Contributions Breakdown

All team members contributed equally.

2

Table of Contents

Summary of Changes 5

Customer Problem Statement 6

Customer Statement of Requirements 6

Glossary of Terms 10

System Requirements 11

Functional Requirements 11

Nonfunctional Requirements 12

User Interface Requirements 13

Functional Requirements Specification 14

Stakeholders 14

Actors and Goals 15

Use Cases 16

Casual Description 16

Use Case Diagram 17

Traceability Matrix 18

Fully-Dressed Description 19

System Sequence Diagrams 23

Effort Estimation using Use Case Points 25

Domain Analysis 28

Domain Model 28

Concept Definitions 29

Association Definitions 30

Attribute Definitions 31

Traceability Matrix 32

System Operation Contracts 33

Mathematical Model 35

Interaction Diagrams and Design Principles 36

System Architecture and System Design 41

Architectural Styles 41

3

Identifying Subsystems 42

Mapping Subsystems to Hardware 43

Persistent Data Storage 43

Network Protocol 44

Global Control Flow 44

Hardware Requirements 45

Algorithms and Data Structures 46

Algorithms 46

Data Structures 47

History of Work, Current Status, and Future Work 48

Merging the Contributions from Individual Team Members 48

Project Coordination and Progress Report 49

History of Work 50

Breakdown of Responsibilities 51

References 52

4

Summary of Changes

● Updated the contributions breakdown matrix to indicate equality
● Reorganized references and labeled points of interest with numbers
● Added low battery alert to REQ4
● Added more detail about the drone and controller connection in REQ6
● Clarified useability in nonfunctional requirements
● Elaborated more on UC-6 and UC-7’s casual description
● Indicated that UC-5 and UC-8 could be considered for future work
● Altered main success scenario for UC-6
● Removed fully-dressed description for UC-8
● Recalculated the Effort Estimation section
● Calculated duration in effort estimation
● Removed mathematical model for AvoidObstacles and added information about

GetData
● Removed interaction diagram for UC-8
● Updated Project coordination and Progress report, so that it reflects recent work.
● Added the description for traceability matrix

5

Customer Problem Statement

Customer Statement of Requirements

Search and rescue operations can often involve first responders and volunteers

trying to cover a vast area in as little time as possible to save the most lives. These

operations can be categorized by the environment take place in. They can further be

categorized by the specific type of operation that needs to take place, such as in urban

areas or in remote mountainous regions. The circumstances that could merit such

operations could involve natural disasters such as earthquakes and hurricanes.

Regardless of the type of operation, technology is being increasingly used to streamline

the efforts of first responders and volunteers in their efforts to try to save as many people

as possible. There have been many search and rescue missions in the past.1 Many of these

missions involved the use of large amounts of people and resources. Even with all the

effort put by the people involved many lives were lost in the process. One such

organization that is involved in search and rescue operations is the Coast Guard. The table

below illustrates the statistics of these operations conducted by the Coast Guard from

2011 through 2015.2

Fiscal
Year

Cases Responses Sorties Lives Saved Lives Lost Unaccounted
Lives

2011 20,512 43,954 21,566 3,793 735 392

6

2012 19,787 43,940 21,609 4,037 713 440

2013 17,803 38,272 19,420 3,753 651 252

2014 17,508 38,282 19,032 3,443 595 308

2015 16,456 37,215 18,781 3,536 603 330

The sheer number of cases and responses conducted by the Coast Guard shows

how big of an issue search and rescue missions are in the United States. The table also

emphasizes that concept that these operations are not always successful or efficient. This

is based on the number of lives lost and the number of people not accounted for along

with a high number of responses for the cases. Our method looks into a possible

alternative approach to these search and rescue missions.

The Search and Rescue Assistant, or S.A.R.A. will modernize the techniques

employed by first responders on search and rescue operations. A drone can cover more

distance than a single person is able to. Currently, the most frequently used techniques to

cover a lot of areas very quickly is to either use a helicopter or to use a lot of people. The

problem with helicopters is that they usually have to fly in from somewhere else and that

can take time. Another problem with the use of helicopters is its lack of ability to search in

narrow or tight areas. The issue with using a lot of volunteers is that people end up risking

their own lives to find survivors. Often times these search parties tend to be

time-consuming and depending on the circumstances, unorganized.3

Ready-to-launch drones can be set up in minutes, which will save time. By attaching

a phone camera to the drone, the user will able to see the video feed that the drone is

transmitting. Doing so will reduce the risk of potentially sending people in harm’s way to

7

get the most accurate information about where people might be trapped. Additionally,

this would also be cost-efficient. This would reduce actual labor since we would mainly be

investing in developing an efficient algorithm, and the device. This algorithm would take

one initial investment and would be developed for improvement. Due to the cost

effectiveness of the device and the reusability of the algorithms involved, if the resources

were to be available, it should be rather simple to manufacture multiple devices.

Naturally, an important aspect of an aerial vehicle of this nature is whether or not it

can survive the challenges/harsh conditions it can face while in the field. To bolster

S.A.R.A’s ability to withstand these conditions, it will be able to avoid obstructions in its’

path, in part due to the implementation of ultrasonic sensors. Using these sensors, and the

usage of the primary camera, the user can easily maneuver through different obstacles

that he/she may encounter during a search and rescue mission. To assist the end-user in

knowing the immediate environment, a thermal imaging attachment will be mounted to

the mobile phone that serves as the drone’s primary camera. Image processing will not

occur on the drone itself, but instead on a centralized hub located back on an emergency

vehicle, which receives relayed images/video real-time so that emergency responders can

quickly determine the best course of action. The sensors/equipment necessary to

accomplish this will be either be purchased or obtained by the team members from

existing laboratories/organizations.

Regarding the working environment, S.A.R.A. will have to be able to maneuver in

potentially tight/enclosed spaces. In such an environment, being able to receive data on

how close an object is to the drone is a specialized function ultrasonic sensors can provide.

8

The drone can then properly take a course of action based on the proximity data it

receives, such as change the amount of thrust in a particular direction or instead start

pushing in an entirely different direction. With regards to processing visual data, the

S.U.R.F. identification algorithm can be used to accurately determine an image’s

correlation/accuracy to a specific desired target object. In this case, the target would be

the human faces/heat signatures.

Even with many solutions to search and rescue operations, S.A.R.A. offers a new

take on optimizing the field. One of the key priorities of search and rescue missions

includes safety, not just for the missing people, but for the people involved in the rescue

operation. This approach makes it easy for even a single person to actively investigate the

search and rescue operation in a safe manner. There would be more focus on the actual

goal of the mission instead of also worrying about the safety of the people working the

rescue/search missions.

9

Glossary of Terms

Database - Server that will keep data of the drone and pictures from the drone camera.

UI - A physical program that allows the user to see the environment from the camera,
information of the drone speed and health, and distance away from the objects.

Controller - A device that will allow the user to control the drone movements and avoid
any obstacles.

Proximity Alert - Internal mechanism that will use proximity sensors to see if the drone is
getting dangerously close to any obstacles in the flight path.

Wireless Connection - The connection between the drone, controller, and database that
allows the user to stay in control of the drone.

Drone Sensors - Devices that allow the drones to detect its speed, distance from user,
stability, to detect obstacles, the drone’s health, etc. Examples include an IR/Thermal
sensor, Accelerometer, and Gyroscope.

S.U.R.F. - Speeded Up Robust Features, an algorithm that finds key points of an image
using Hessian Matrices and scaled space, making it simpler to compare different images
and see if they correlate appropriately.

10

System Requirements

Functional Requirements

REQ1 - Database/Server
REQ2 - UI Screen
REQ3 - Controller
REQ4 - viewDroneCondition
REQ5 - Proximity Alert
REQ6 - Wireless Connection
REQ7 - GPS tracking
REQ8 - Infrared Sensor

Requirement Priority Description

REQ1 5 Data server that will store the information from the
drone and allow the user to access it

REQ2 2 The user interface will allow the user to see the drones
footage and any other relevant information

REQ3 1 The user should be able to control the drone’s
movements

REQ4 4 The drone will send a signal to the controller to notify of
its operating status and alert the user if the battery is

low.

REQ5 1 The drone should be able to correctly identify any close
obstacles and be able to able to avoid them.

REQ6 2 A connection between the drone and controller is
established via remote control.

REQ7 2 The user will be able to know exactly where the drone is.

REQ8 3 This sensor will allow the user to detect heat signatures
through any material walls

11

Nonfunctional Requirements

Usability - User will figure out the user-friendly interface for controlling the drone by
labeling buttons, displaying drone data, and requiring very little taps on the screen.

Security - User will be able to use the interface without having to jeopardize his/her
safety by using the drone from a reasonable distance.

Accessibility - The user will be able to run the software to operate the drone, on any
smartphone regardless of the OS on the device.

Efficiency - User will be able to use the software with any accompanying hardware
through a wireless connection.

Recovery - User will be able to recover the drone if the signal is lost. If the drone software
is program to auto course to controller and land back safely.

12

User Interface Requirements

Requirement Priority Description

REQ1 1 The controller for the drone will have a live feed of what
the camera is seeing

REQ2 3 It will also display various properties of the drone. Some
properties include speed of motors, drone battery level,
and current location

REQ3 2 Proximity alerts will be sent to the controller so the user
knows which direction to avoid

REQ4 4 The operating status of the drone will be sent to the
controller so the user will know if they have to pull the
drone back in case of low battery level.

Image 14

13

Functional Requirements Specification

Stakeholders

Stakeholders

- Licensed User
- First Responders

- Police Officers
- Authorized Volunteers
- Firefighters
- EMT’s
- Emergency Dispatchers

14

Actors and Goals

Actor Type Actor’s Goal Use Case Name

User Initiating To control the drone MoveDrone (UC-1)

User Initiating To view a live video feed of
the drone

ViewCamera (UC-2)

User Initiating To get the drone’s current
location.

GetLocation (UC-3)

Drone Initiating To check for and avoid
obstacles.

CheckObstacles
(UC-4),

AvoidObstacles
(UC-5),

GetLocation (UC-3)

User Initiating To get the drone’s operating
status.

GetStatus (UC-6)

First Responder Initiating To identify the emergency
from the drone.

ViewCamera
(UC-2),

GetStatus (UC-6)

Sensors Participating To locate nearby objects. CheckObstacles
(UC-4),

AvoidObstacles
(UC-5)

GPS Participating To track the current location
of the drone.

GetLocation (UC-3)

Server Participating To store all of the data that
the drone has obtained.

getData (UC-7),
GetStatus (UC-6)

Drone Participating To return to home when the
signal is lost for more than a

certain time.

ReturnToHome
(UC-8)

15

 Use Cases

Casual Description

Use Case Name Description Requirements

MoveDrone (UC-1) The user can move the drone
using the controller.

REQ3, REQ6

ViewCamera (UC-2) The user can view a video of
the drone via the phone’s

camera.

REQ2

GetLocation (UC-3) The user can detect the
drone’s location using GPS.

REQ2, REQ7

CheckObstacles (UC-4) The drone can detect
obstacles in its path.

REQ5, REQ8

AvoidObstacles (UC-5)* The drone can avoid
obstacles based on its

surroundings.

REQ5, REQ8

GetStatus (UC-6) The user or a first responder
can check the current state of
the drone, such as its power
level or the phone’s battery

life.

REQ1, REQ2, REQ4

GetData (UC-7) The user can check all of the
data that the drone is

transmitting through the
sensors.

REQ1, REQ6

ReturnToHome (UC-8)* The drone can safely
autopilot back to the home

(controller) in case the
connection is lost. The user
will know the drone’s last
location until it gets back.

REQ5, REQ7, REQ8

*This can be considered for future work.

16

Use Case Diagram

17

Traceability Matrix

Requirements Priority UC-1 UC-2 UC-3 UC-4 UC-5 UC-6 UC-7 UC-8

REQ1 5 x x

REQ2 2 x x x

REQ3 3 x

REQ4 4 x

REQ5 1 x x x

REQ6 2 x x

REQ7 2 x x

REQ8 3 x x x

Total
Priority

- 5 2 4 4 4 11 7 6

The traceability matrix above shows the relationship between the use cases and the functional
requirements. It also ranks each of the use cases based on which use cases wee believe have a
higher priority. The matrix also ranks the priority of the requirements by what we think are the
most important features for the drone to have. The way the matrix works is that each requirement
has a set priority and if a use case incorporates a requirement; the priority points of the
requirement are added to the use case. The priority points of each use case are the sum of the
requirements for that use case. For example, use case 6 has a priority of 11 which comes from
REQ1 (5), REQ2 (2), REQ4 (4). If the there values of the requirements are added together, you
get the priority of use case 6 which is 11.

18

Fully-Dressed Description

Use Case 6: GetStatus

Related Requirements: REQ1, REQ2, REQ4

Initiating Actor: Drone

Goal: To get the drone’s operating status

Participating Actor: Server

Preconditions: A signal between the drone and the

controller is available

Postconditions: Allows the user to know if the drone

is active or not.

Main Success Scenario:

1. The user will know how much power the drone is using.
2. The user can see the phone’s battery level and is

alerted whenever it drops below 20%.

Use Case 7: GetData

Related Requirements: REQ1, REQ6

Initiating Actor: User

Goal: Collect data on the various operations

of the drone

Participating Actor: Server

Preconditions: Drone is on and a connection between

19

the drone and controller is established.

Postconditions: Allows the user to manipulate and store
that data.

Main Success Scenario:

1. The user can adjust motors speeds based on collected
data.

2. The user uses the controller to move the drone if
needed based on altitude.

Use Case 1: MoveDrone

Related Requirements: REQ3, REQ6

Initiating Actor: User

Goal: Ability to move the drone using a controller

Participating Actor: Drone, Controller

Preconditions: Drone is available

Controller is Available
Postconditions: Allows the user to maneuver the drone using

a controller and a camera

Main Success Scenario:

1) The user sets the drone on the field.
2) The user uses the controller to test the drone’s

ability to move.
3) The controller will send signals to drone which

will allow the user to control and move it.

Use Case 3: Get Location

Related Requirements: REQ2, REQ7

20

Initiating Actor: User

Goal: Ability to detect the current location of

drone

Participating Actor: Drone, Controller

Preconditions: The GPS is on and in a working condition.

The connection between the drone and
controller is stable.

Postconditions: Allows the user to retrieve the current
location of drone displayed on the controller.

Main Success Scenario: 1)The controller receives the GPS signal

from the drone.
2) The user can see the current location of
drone.

Use Case 4: CheckObstacles

Related Requirements: REQ5, REQ8

Initiating Actor: Drone

Goal: To enable drone to detect obstacles in its

path.

Participating Actor: Sensors

Preconditions: The sensors are on and in a working

condition.
The physical mechanism of drone is
undamaged and operable.

Postconditions: Allows the drone to detect obstacles that can
possibly damage or interrupt its mission.

21

Main Success Scenario: 1)The sensors built on drone detect the

obstacles.
2) It alerts the user, thus the user can
maneuver the drone.

22

System Sequence Diagrams

Use Case 1: MoveDrone

23

Use Case 6: GetStatus

Use Case 7: GetData

24

Effort Estimation using Use Case Points

 Use case Points

UUCP=UUCW+UA
W

108

TCF .955

UCP = UUCP × TCF 103.14

UAW
Simple=1
Average =2
Complex = 3

Actor Name Description of
Relevant
characteristics

Complexity Weight

User To control the
drone

Complex 3

User To view a live video
feed of the drone

Complex 3

User To get the drone’s
current location

Simple 1

Drone To check for and
avoid obstacles

Complex 3

User To get the drone’s
operating status

Simple 1

First Responder To identify the
emergency from the

drone

Simple 1

25

Sensors To locate nearby
objects

Average 2

GPS To track the current
location of the

drone

Average 2

Server To store all of the
data that the drone

has obtained

Average 2

UAW(home access) = _3 * Simple + 3_ * Average + 3_ * Complex = 18

UUCW
Simple=5
Average =10
Complex = 15

Use Case Description Category Weight

MoveDrone (UC-1) The user can move
the drone using the

controller.

complex 15

ViewCamera (UC-2) The user can view a
video of the drone.

complex 15

GetLocation (UC-3) The user can detect
the drone’s location

using GPS.

average 10

CheckObstacles
(UC-4)

The drone can
detect obstacles in

its path.

complex 15

AvoidObstacles
(UC-5)

The drone can avoid
obstacles based on

its surroundings.

complex 15

GetStatus (UC-6) The user or a first
responder can

check the current
state of the drone

based on the

simple 5

26

emergency.

GetData (UC-7) The user can check
all of the data that

the drone is
transmitting.

complex 15

UUCW = 1_ *Simple + _1 * Average + _5 *Complex = 1x5+1x10+5x15= 90

TCF

Technical
Factor

Description Weight Complexity calculations

T1 Distributed web based
System

2 5 10

T2 Performance objectives 2 3 6

T3 End-user efficiency 2 4 8

T4 Reusable code and
design

1 2 2

T5 Easy to use 0.5 1 .5

T6 Moderately difficult to
change

1 3 3

T7 Range of operation 1 3 3

T8 Signal Strength 1 3 3

TCF=C1+C2x Technical Factor Total=35.5

C1=0.6, C2=0.01, Technical Factor Total=
TCF= .955
Duration = UCP*PF = 103.14*28 = 2887.92

27

Domain Analysis

Domain Model

The domain model is derived from the concepts, attributes, and associations from all the
use cases and requirements.

28

Concept Definitions

Rs# Responsibility Description Type Concept Name

Rs1. Coordinate the actions that the user wants the drone
to take.

D Controller

Rs2. An HTML file that shows the user all the possible
actions of the drone along with live camera feed.

K Interface

Rs3. Establishes a remote connection between the
camera of the drone and the controller.

D Connector

Rs4. Renders the records onto an HTML file. D Page Maker

Rs5. Calculate the speed, battery life and the location of
the drone.

K Dynamic Data

Rs6. Notifies the user of potential issues such as low
battery or obstacles.

D Notifier

Rs7. Makes adjustments to insure that the movements
between the controller and drone are synchronized.

D Calibrator

29

Association Definitions

Concept Pair Association Description Association name

Page Maker ↔
Interface

The Page Maker prepares the Interface Display

Dynamic Data ↔
Notifier

The Dynamic Data informs the Notifier if
there is any issue that the user needs to know.

Create Alerts

Calibrator ↔
Controller

The Calibrator makes sure that the inputs
given by the user with the Controller are
properly executed with minimal latency.

Sync IO

Page Maker ↔
Dynamic Data

The Page Maker records the different types of
data in regards to the drone on an html file.

Record Data

Page Maker ↔
Notifier

If specific data record meets a certain alert
condition, the user will need to know.

Creates Alerts.

30

Attribute Definitions

Concept Attributes Attribute Description

Controller User’s identity
Drone
parameters

Used to determine who will be controlling the
drone and will handling the specific actions the
user wants the drone to take. These actions are
different so they will lie under different
parameters.

Interface Drone action list
Drone camera
feed

Used to show the user a physical view of all the
actions available to the drone.

Will show the user a physical view of the live
camera.

Connector Remote
connection

Used to essentially connect the camera of the
drone with the controller. So this will ensure
everything is happening in live time and the user
will be operating controls with an accurate visual.

Page Maker Record list Used to make sure the HTML file has a list of all
the user records including action list.

Dynamic Data Drone
parameters

Will look for specific types of drone data such as
speed, battery life and the location of the drone at
all times.

Notifier Contact
information

Will contact user if there are any ter with the
drone such as low battery, and physical obstacles.

Calibrator Quality control Quality will be ensured because of
synchronization checks between drone and
controller.

31

Traceability Matrix

 Domain Concepts

Use
Cases

Priority
Weight

Interface Controller Connector Page
Make
r

Dynamite
Data

Notifier Calibrato
r

UC-1 5 x x x

UC-2 2 x x

UC-3 4 x x

UC-4 4 x

UC-5 4 x x

UC-6 11 x x x x

UC-7 7 x x x x

UC-8 6 x x

32

System Operation Contracts

Operation MoveDrone

Preconditions ● Drone is available
● Controller is available
● Application is open
● The physical mechanism of drone is

undamaged and operable

Postconditions ● Allows the user to maneuver the
drone using a controller and a
camera

● Get visual feedback about the
movement

Operation GetLocation

Preconditions ● The GPS is on and in a working
condition

● The connection between the drone
and
controller is stable

Postconditions ● Allows the user to retrieve the
current
location of drone displayed on the
controller

Operation CheckObstacles

Preconditions ● The sensors are on and in a working
condition

● The physical mechanism of drone is
undamaged and operable

Postconditions ● Allows the drone to detect
obstacles that can possibly damage
or interrupt its mission using the
sensors.

33

Operation GetStatus

Preconditions ● A signal between the drone and the
controller is available

Postconditions ● Allows the user to know if the
drone is active or not

Operation GetData

Preconditions ● Drone is on and a connection
between
the drone and controller is
established

Postconditions ● Allows the user to manipulate and
store that data.

● Get webpage of data

Operation ReturnToHome

Preconditions ● Drone is active
● Controller is available
● The physical mechanism of drone is

undamaged and operable

Postconditions ● Allows the user to acquire the
drone and turn off and pack up the
drone

34

Mathematical Model

The drone will be calibrated to use math in order to move and avoid obstacles. This model
is correlated with UC-1, UC-5, and UC-7.

UC-1 (MoveDrone): A controller is used to move the drone. The user can control to
rotate, move forward/backward, throttle, and strafe the drone. This will involve adjusting
the speed of motors to change the velocity and angle of the drone.

UC-7 (GetData): The user will be able to retrieve the battery level, speed, and position of
the drone. These values will be updated in real time via the drone’s wireless connection.
The speed is calculated by taking the latitude and longitude, and when it updates,
calculate the distance divided by the time it took to update.

35

Interaction Diagrams and Design Principles

Use Case 1: MoveDrone

The diagram for the first use case is displayed above. In this case, the User will first
activate the system in order to gain access to the controller. From there the User is able to
use the controller to move the drone. The User will be able to see visual feedback from the
drone.
Design Principles:
The design principles utilized in this use case include the Low Coupling Principle. This
design principle is utilized as the communication links that exist are very short. Most of
the communication is done between the User and controller, and then the controller and
drone.

36

In this use case diagram the controller could act as the publisher while the drone will act
as the subscriber. The user utilizes the controller to send events to the drone which will
work if it has received a valid event.

Use Case 3: GetLocation

The diagram above demonstrates the interactions between classes in UC-3: get the
location. Once the user has control of the drone and being able to maneuver around
obstacles. First, the user sends a request to get the location of the drone to the controller
which then gets requests it to the drone. The drone then requests the coordinates to the
GPS server and gets the coordinates and sends it back to the controller to make it visible.
The user sees the drone’s location based on longitude and latitude.

Design Principles:
The design principles employed in the process of assigning responsibilities were the
expert doer principle and high cohesion principle. The expert doer principle is used
because each of the classes is an expert for specific functions. An example, the drone is
responsible for getting the coordinates from the GPS server and relaying it back to the
controller for the user to see.

This use case diagram will also work with the publisher-subscriber
design pattern. The controller will act as the publisher while the drone

37

and the GPS act as the subscribers. The controller will send a request to
update the current gps location of the drone to the GPS, which in turn
will verify the location of the drone and then return the coordinates.

Use Case 4 : CheckObstacles

Design Principle:
The design principle for this use case is the expert doer principle and high cohesion
principle because the parameters for the obstacle is super specific. And that data should
be focused on because it can affect the overall behavior of the drone. It is also important
that the specific obstacles that are being checked for are being communicated to other
sources.

38

Use Case 6: GetStatus

The interaction diagram for use case 6 is displayed above. The drone basically sends a
signal to the system which the user can see the result of through the controller. The part
of this use case is to let the user know of the operation status of the drone, in particular,
the battery level. The user is also able to view the past values sent by the drone.

Design Principles:
The design principles utilized by this use case are Expert Doer Principle, High Cohesion
Principle, and the Low Coupling Principle. Since this use case is the only use case that
knows about the battery status it makes sense that the Expert Doer Principle is used. As

39

for the High Cohesion Principle, the only computation done by this part is the battery
level. The Low Coupling Principle deals with the concept that this use case does minor
communication between the drone and the controller.

Use Case 7: GetData

The diagram above demonstrates how the user, controller, and drone interact with each
other to show necessary data of drone to the user, so the user can control the drone.
When the system needs data, the drone sends the data that is saved on it to the controller
upon the request by the controller. When the controller receives the data, it displays it on
the webpage, so the user can see the data and make necessary judgments of controlling
the drone. The user will verify its execution by the updated live-feed.

Design Principles:

40

The design principle of this use case is High Cohesion Principle. There is more focus on
displaying the necessary data and sending instructions to drone to control it, rather than
having a high responsibility of computing data.

System Architecture and System Design

Architectural Styles

REST: Since all the information about the drone is displayed on a website using HTML, it
complies with a RESTful API. The video feed, physical drone data, and controller inputs are
gathered from servers controlled by other subsystems and represented as hypertext.

Client/Server: The client is the person controlling the drone and the server is the
information picked up by the drone. When the user wants to throttle the drone, for
instance, a request is sent to the drone’s motors to move up or down, which then responds
with movement seen by the live video feed.

Layered: Certain services of the drone depend on each other. For example, getting the
current location of the drone is initiated by the controller, which depends on the drone
requesting its location, which depends on the coordinates returned by the GPS.

Uniform interface: All resource should be reachable from any devices. It should not be
constraint to only one device. The website should be simple but effective.

41

Identifying Subsystems

The PhysicalData package contains part of the Controller class to power the drone. It
imports the LocationData package to get the drone’s location and imports the
ImageProcessing package to display live data on the controller. It also contains the System
class to display the current status of the drone.
The ImageProcessing package contains the Display class for displaying the live video feed
and physical data of the drone.
The Obstacles package has its own Controller class for controlling the drone to avoid
obstacles. Like the PhysicalData, it imports the drone data from LocationData to steer the
drone in the right direction.
The LocationData package has a Drone class to request its location and a GPS class to
retrieve the drone’s position.

42

Mapping Subsystems to Hardware

1. Physical Data

The majority of the hardware for physical data will incorporate the Raspberry Pi,
which will send the required signals to the software component. The motors will also be
involved when it comes to the detection of speed.
2. Image Processing

The hardware needed for this substem will include a camera inside a phone that
will be mounted to the drone. The mobile device is going to be a Samsung Galaxy S4. The
rear camera is a 13.0 MP autofocus camera with LED flash, with a Sony IMX091PQ
sensor. We are also using an infrared lens to be able to detect people.
3. Obstacles

The hardware that is mapped from the Obstacles’ subsystem is the the ultrasonic
sensor that will be attached in multiple locations around the drone. The model of the
ultrasonic sensor that is going to be used is HC-SR04.
4. Location Data

The mapped hardware for the Location Data subsystem would be the GPS, which is
inside the smartphone that is mounted to the drone.

Persistent Data Storage

The drone will be equipped with Raspberry Pi. Even with the drone powered off, this
system will be capable of saving any data from previous flights. However, this data can be
transferred to another system since it is unnecessary for the drone to carry all the data
from previous flights.

43

Another form of data storage is the image component of the drone. Even though it is a live
feed, it will require some form of data storage through cache memory. This is due to the
fact that the image will be required to be transferred from one device to another. Similar
to the image processing, the ultrasonic sensor will also have a cache data component. The
ultrasonic sensor will have to transmit the distance between the drone and any obstacles
to the controller. This data does not need to be stored for a long time, but is still required if
any action is needed to be taken by the drone.

Network Protocol

For managing the network that our system will make use of, the HTTP

communication protocol will be utilized. This was chosen because the data that is being
transmitted ends up as part of a browser-based display, for which HTTP can be used for
simpler client-server interactions. The webpage that the drone operator sees requires
data regarding the drone’s location (GPS), the live camera feed, and other drone-related
physical data (battery level, speed, etc.). These need to be delivered across the drone’s
connection to the operator’s device, which naturally calls for a web-based communication
protocol layered around TCP/IP.

Global Control Flow

Our project can be noted as both procedure driven and event driven. The reason behind
this is because initially the same steps have to be taken to initially operate the drone
however it is mainly an event driven system because the case for why this drone is being
used is different. There are a lot of situational factors so the user must generate a
different series of actions in different order depending on the specific case we are looking
at. So it is mainly event driven because it is very unlikely that the same steps will be taken
in the same order for more than one event.

Our system is an event response type with concern for real time. Since it is real time it is
not periodic. It is not periodic because the time differs for the different situations. There
are no time constraints for each case because we don’t know how long each case would
take.

44

Hardware Requirements

The access to control the drone can be done through any touch-enabled device
with a internet browser such as a smartphone or tablet. The device requires a minimum of
1 GB since to process the live-feed video from drone smoothly. There will also be a a
camera mounted on a phone that is placed on the drone in order to capture video. The
interior of the drone will contain a raspberry pi. The device that will process the live-feed
from the camera has to have a colored display of a resolution of at least 1920 x 1080 to
allow the user to see where the drone is clearly. This can be done with any modern display
devices like smartphones or tablets. Because of the quality of the image that is
transmitted from the camera on the drone, the connection between the controller and the
drone has to operate smoothly, with relatively low latency. The wireless connection
bandwidth is a 2.4 GHz connection.

45

Algorithms and Data Structures

Algorithms

The main factor of this project is to have a safe and efficient flight for drone. The
drone will not be capable of performing tasks such search and rescue if the drone is not
durable. To accomplish this goal is to control the velocity of drone and locate any
obstacles on it’s way. Calculating the velocity and distance between the drone and
obstacles involve complex algorithms.

The velocity of the drone can be calculated by using the formula that states that
. The variable v will stand for velocity, a will stand for acceleration, and timev = a * t

stands for time. Of course though we will have to account for other factors such such as
thrust and pitch for when we are going over the drone’s movements. The total amount of
thrust is going to be equal to the following equation.

.t F t0) dF = * (V max
V max−V − F

FD is the drag force.
Ft0 is the force of thrust when the velocity is at 0 meters/second.
FD

.5 d (A(f ront) os(P (max) (motor))) A(top) in(P (max) (motor)))]= 0 * ρ * C * [* c − P + (* s − P * v2

For the above equation the constant is going to be equal to the density of air, while theρ

constant Cd is equal to the drag coefficient. The variable Pmotor is the pitch of the motor,
while Pmax is the maximum pitch the drone is able to achieve without losing altitude.
Pmax = os ()c −1 m

T0

The variable m is equal to the mass of the drone and the variable T0 is equal to the total
thrust of the drone.

When the ultrasonics sensors recognize any obstacles, the drone needs to know
where the obstacles are. The drone is equipped with four ultrasonics sensors. The four
sensors should locate the exact location of obstacles and alert the user if necessary, so the
user can maneuver the drone. This can be also used in the function such as “return to
home” when the drone autonomously return to the base.

46

The distance between two points in 3-D Cartesian coordinates involves using

equation, d(P1,P2) = , P1 = (x1, y1, z1), and P2 = (x2, y2, z2) √(x)2 − x1
2 + (y)2 − y1

2 + (z)2 − z1
2

where P1 can be the coordinates of drone and P2 can be the coordinates of obstacle.
However, since the drone is equipped with the ultrasonics sensors, it can use the

time it took for an ultrasonic wave to travel to an obstacle to calculate the distance

between them. The equation will be, .istance to object d = 2
time speed*

Time is divided by two since the time it took is an ultrasonic wave is to be emitted
and reflected back to the drone combined. Only one way is needed.

Speed is the speed of ultrasonic wave, which will be 340 meters/second in the air.
The speed of ultrasonic wave is significantly greater than the speed of drone, that

speed of drone can be ignored in the calculation.
.

Then d(P1,P2) will be the distance between the drone and obstacle. If the distance is less
than a safe distance, the user will notice the drone through the alert on screen and will be
able to maneuver. It is very important that our algorithm is consistently checking this
distance because it can alert a safety issue if needed. The equation we’ll be using was

mentioned earlier and it is d(P1,P2) = , P1 = (x1, y1, z1). √(x)2 − x1
2 + (y)2 − y1

2 + (z)2 − z1
2

This is going be estimated in cartesian coordinates because we are dealing with real time.

Data Structures

The main data structure that we will use is going to be an array. We will use an array
because of its flexibility and performance. We need a structure that can store many
variables and is possible to easily index. This array will mainly be used for the variables
that are used for status and operation, along with physical data.

47

History of Work, Current Status, and Future

Work

Merging the Contributions from Individual Team

Members

Shantanu came up with the project idea and was able to explain how we could contribute
to the project during weekly meetings. We decided to split the work into four subgroups:
image processing, location data, physical data, and obstacles. Since not everyone can
make it to the weekly meetings, each subgroup has set up their own meeting times to
discuss specific functionalities to be implemented in this project. This also ensures that
each person can discuss how they will contribute toward building S.A.R.A.

Krishna Mahadas created and shared the Google Drive for our project so we could easily
collaborate on creating the reports.

Abhishek manages the GitHub repository to maintain the project code and divide the
work among the team. Each branch corresponds to the different subgroups. Each person
works on their subgroup work and when it’s ready to be implemented, it is merged into
the master branch.

A website is going to be made and developed with relevant updates to the project. This
will be managed by Abhishek. Other team members will help.

48

Project Coordination and Progress Report

Image Processing:
The image processing component of the project mainly implements the use case
ViewCamera. So far we have already been able to display what the phone camera is seeing
on other devices such as a pc. We tried using multiple third-party applications and
features of the Android phone to see which works best. Some third-party applications we
tried are Sidesync, Alfred and IPwebcam. All of these applications are able to display
decent quality video feed for a reasonable range using wifi. Another approach was using
the screen mirroring function of the android. This approach also uses wifi and provides a
really good quality image. However, it does not have much of the range due to the fact the
phone needs to be close to where ever the display is being transmitted to. So we decided
to try using the Alfred application for now. The Sidesync application allowed us to have a
better version of screen mirroring and actually control the phone from the pc. So we are
able to run our interface on the phone and then display it on the laptop. This is being done
by using the HTML code of the webpage version of the application since the camera feed
is coming from the phone camera itself. A prototype of the controller can be found on our
website.

Location Data:
The use case that is the main function of location data is GetLocation. We already have
code for this use case in HTML that provides the location of the given device in latitude
and longitude form. Since the Sidesync app transfer the phone screen to the laptop, and
the phone is running our interface, the location of the phone is transferred to the laptop.

Physical Data:
The physical data part of the project deals with the GetStatus and GetData use cases. It
will also include the MoveDrone use case. Due to the hardware component of the project,
this part of the project can be in effect once the drone is in full operation. Specifically this
part of the project will depend on the use of a Raspberry Pi. So currently, we are all

49

working towards the construction and integration of the hardware and software
components of the drone.
Obstacles:
The Obstacles section of the project deals with the remainder of the use cases. The use
cases include CheckObstacles and AvoidObstacles. Similar to the physical data
component, this section will mainly be in effect once the drone is working. As of right now
we are using four ultrasonic sensors on the drone to check for nearby obstacles. They
utilize the Raspberry pi and Python to detect the obstacles around the drone and print out
the distance between the drone and the object.

History of Work

● Milestones:

○ Drone Camera Transmission: Be able to provide a reliable stream from the
onboard phone camera to a mobile device set aside to mock the operator’s
control device.

■ Date of Completion: March 8th, 2019
○ Hardware-Associated Tasks: After all necessary hardware components arrive

between March 1st-3rd, the construction of the drone frame to fit the needs
of the project. This includes mounting the onboard camera and
microcontroller to the drone frame.

■ Date of Completion: March 20th, 2019
○ Webpage Integration: Collecting all relevant data and finalizing

transmission/display of said data to the operator’s control device.
■ Date of Completion: March 22nd, 2019

○ Sensors: Managed to get the sensors incorporated with the raspberry pi and
be able to record distance from an object.

■ Date of Completion: March 22nd, 2019

The milestones that have been completed so far and the planned milestone achievements
so far are slightly different from each other. We initially experienced delays in receiving
the hardware components on time so we could not meet up some of the expected
milestones on the hardware side. We did manage to complete several of the other planned
achievements on time. These achievements included getting the video feed from the
mobile’s camera and getting the webpage integration done on time.

50

The future plans for this project will be focused more on integrating everything around
the drone and making sure that the various subsystems can work in cohesion. All future
work for this project is going to be focused on the drone itself and not on the systems that
utilize the drone or that can be placed on the drone.
Key Accomplishments:

● Webpage Integration
● Camera Transmission

Breakdown of Responsibilities

● Project divisions:(all tasks that are in progress/to be completed)
○ Visual Data Processing:

■ Shantanu: Management of the main wireless
network/communication of data

■ Abhishek: Webpage development/Data handling on operator-side
■ Krishna Mahadas: Onboard camera handling, transmission (in

progress)
○ Obstacle Management

■ Vishal: Managing sensor data, implementing avoidance/assoc.
movement

○ Location Data
■ Avnish: Gathering onboard GPS data, transmission

○ Physical Drone Data
■ Krishna Tottempudi: Determining overall operational status from

collected data
■ Sahana: Determining power levels/operational lifespan of drone

real-time
■ Won Seok: Determining the strength of signal/connection to the

operator

All other contributions to the project can be found in the individual contributions
breakdown matrix on page 2.

51

References
1. “Drone Sense”

https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA
0QEAAYASAAEgKMu_D_BwE

2. Byran, Cantfil. “ United States Coast Guard Search and Rescue Summary Statistics
1964 thru 2015.”
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats
%2064-16.pdf

3. Rhode, Steve.“DRONE SEARCH-AND-RESCUE STUDY REVEALS POTENTIAL,
LIMITS”
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-r
eveals-potential-and-limits

4. “Image 1”
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9a
GlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digit
al_trends_973/8122e594705a009db372bf32720d9fe9

5. “Using a Raspberry Pi distance sensor (ultrasonic sensor HC-SR04).”
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/

6. “Raspberry Pi Distance Sensor: How to setup the HC-SR04”
https://pimylifeup.com/raspberry-pi-distance-sensor/

7. “HC-SR04 Ultrasonic Range Sensor on the Raspberry Pi”
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspber
ry-pi

8. “Installing GPIO”
https://gpiozero.readthedocs.io/en/stable/installing.html

52

https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA0QEAAYASAAEgKMu_D_BwE&fbclid=IwAR3DqethzWJijBZxyXBlNiOGh9HX8zBOH5Kdv-NpY9JHJiRExIVEcfeOqns
https://www.dronesense.com/?gclid=EAIaIQobChMIqo-45_Gx4AIVwoCfCh2CbA0QEAAYASAAEgKMu_D_BwE&fbclid=IwAR3DqethzWJijBZxyXBlNiOGh9HX8zBOH5Kdv-NpY9JHJiRExIVEcfeOqns
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats%2064-16.pdf
https://www.dco.uscg.mil/Portals/9/CG-5R/SARfactsInfo/SAR%20Sum%20Stats%2064-16.pdf
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-reveals-potential-and-limits
https://www.aopa.org/news-and-media/all-news/2018/october/01/drone-study-reveals-potential-and-limits
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://s.yimg.com/ny/api/res/1.2/2P8Y6UqlB8dKOiVIg9Rscg--~A/YXBwaWQ9aGlnaGxhbmRlcjtzbT0xO3c9ODAw/http://media.zenfs.com/en-US/homerun/digital_trends_973/8122e594705a009db372bf32720d9fe9
https://tutorials-raspberrypi.com/raspberry-pi-ultrasonic-sensor-hc-sr04/
https://pimylifeup.com/raspberry-pi-distance-sensor
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://www.modmypi.com/blog/hc-sr04-ultrasonic-range-sensor-on-the-raspberry-pi
https://gpiozero.readthedocs.io/en/stable/installing.html

9. “The Equations for Speed”
https://quadstardrones.com/the-equations-for-speed/

10. “Implementing an in-browser camera”
https://davidwalsh.name/browser-camera

11. “Tracking current location”
https://www.w3schools.com/html/html5_geolocation.asp

53

https://quadstardrones.com/the-equations-for-speed/
https://davidwalsh.name/browser-camera
https://www.w3schools.com/html/html5_geolocation.asp

